When Does Disengagement Correlate with Performance in Spoken Dialog Computer Tutoring?
نویسندگان
چکیده
In this paper we investigate how student disengagement relates to two performance metrics in a spoken dialog computer tutoring corpus, both when disengagement is measured through manual annotation by a trained human judge, and also when disengagement is measured through automatic annotation by the system based on a machine learning model. First, we investigate whether manually labeled overall disengagement and six different disengagement types are predictive of learning and user satisfaction in the corpus. Our results show that although students’ percentage of overall disengaged turns negatively correlates both with the amount they learn and their user satisfaction, the individual types of disengagement correlate differently: some negatively correlate with learning and user satisfaction, while others don’t correlate with either metric at all. Moreover, these relationships change somewhat depending on student prerequisite knowledge level. Furthermore, using multiple disengagement types to predict learning improves predictive power. Overall, these manual label-based results suggest that although adapting to disengagement should improve both student learning and user satisfaction in computer tutoring, maximizing performance requires the system to detect and respond differently based on disengagement type. Next, we present an approach to automatically detecting and responding to user disengagement types based on their differing correlations with correctness. Investigation of our machine learning model of user disengagement shows that its automatic labels negatively correlate with both performance metrics in the same way as the manual labels. The similarity of the correlations across the manual and automatic labels suggests that the automatic labels are a reasonable substitute for the manual labels. Moreover, the significant negative correlations themselves suggest that redesigning ITSPOKE to automatically detect and respond to disengagement has the potential to remediate disengagement and thereby improve performance, even in the presence of noise introduced by the automatic detection
منابع مشابه
When Does Disengagement Correlate with Learning in Spoken Dialog Computer Tutoring?
We investigate whether an overall student disengagement label and six different labels of disengagement type are predictive of learning in a spoken dialog computer tutoring corpus. Our results show first that although students’ percentage of overall disengaged turns negatively correlates with the amount they learn, the individual types of disengagement correlate differently with learning: some ...
متن کاملSpeech recognition performance and learning in spoken dialogue tutoring
Speech recognition errors have been shown to negatively correlate with user satisfaction in evaluations of task-oriented spoken dialogue systems. In the domain of tutorial dialogue systems, however, where the primary evaluation metric is student learning, there has been little investigation of whether speech recognition errors also negatively correlate with learning. In this paper we examine co...
متن کاملTODO: This is a placeholder. Final title will be filled later
Speech recognition errors have been shown to negatively correlate with user satisfaction in evaluations of task-oriented spoken dialogue systems. In the domain of tutorial dialogue systems, however, where the primary evaluation metric is student learning, there has been little investigation of whether speech recognition errors also negatively correlate with learning. In this paper we examine co...
متن کاملDiscourse and Dialogue Processing in Spoken Intelligent Tutoring Systems
In recent years, the development of intelligent tutoring dialogue systems has become more prevalent, in an attempt to close the performance gap between human and computer tutors. Tutoring applications differ in many ways, however, from the types of applications for which spoken dialogue systems are typically developed. This talk will illustrate some of the opportunities and challenges in this a...
متن کاملAdapting to Multiple Affective States in Spoken Dialogue
We evaluate a wizard-of-oz spoken dialogue system that adapts to multiple user affective states in real-time: user disengagement and uncertainty. We compare this version with the prior version of our system, which only adapts to user uncertainty. Our analysis investigates how iteratively adding new affect adaptation to an existing affect-adaptive system impacts global and local performance. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Artificial Intelligence in Education
دوره 22 شماره
صفحات -
تاریخ انتشار 2013